

Año académico 2014-15

Asignatura 11268 - Relatividad y Geometría

Castellano

Grupo 1, 2S

Guía docente A

Idioma

Identificación de la asignatura

Asignatura 11268 - Relatividad y Geometría

Créditos 1 presenciales (25 horas) 2 no presenciales (50 horas) 3 totales (75 horas).

Grupo Grupo 1, 2S (Campus Extens)

Período de impartición Segundo semestre

Idioma de impartición Inglés

Profesores

Profesor/a	Horario de atención a los alumnos					
	Hora de inicio	Hora de fin	Día	Fecha inicial	Fecha final	Despacho
Jaume Jesús Carot Giner jcarot@uib.es	Hay que concertar cita previa con el/la profesor/a para hacer una tutoría					
Sascha Husa - sascha.husa@uib.es		Hay que concerta	ar cita previa	con el/la profesor/a pa	ıra hacer una tutoría	

Contextualización

Asignatura optativa de 3 créditos ECTS del primer semestre del master FAMA correspondiente al módulo de Física, materia Astrofísica y Relatividad.

Jaume Carot es Catedrático en Física Teórica y es un experto en Relatividad General y Cosmología.

Sascha Husa es un experto en relatividad numérica y en el modelado de fuentes de ondas gravitacionales. Se unió al grupo de la UIB en 2008 y actualmente ocupa el cargo de Profesor Contratado Doctor. Las contribuciones de Husa a la relatividad numérica van desde sus fundamentos matemáticos a la física de sistemas binarios de agujeros negros y la interfaz con el análisis de datos de ondas gravitacionales.

Requisitos

Dirigido a alumnos y alumnas graduados tanto en Física como en Matemáticas, así como en disciplinas afínes.

Recomendables

Conocimientos básicos de relatividad general y geometría diferencial.

Competencias

Año académico 2014-15

Asignatura 11268 - Relatividad y Geometría

Grupo 1, 2S

Guía docente A
Idioma Castellano

Específicas

* EAR1: Comprensión y dominio de los conceptos básicos de la relatividad general, ondas gravitacionales y agujeros negros y de su aplicación para la resolución de problemas..

Genéricas

- * CB1: Poseer y comprender conocimientos que aporten una base u oportunidad de ser originales en el desarrollo y/o aplicación de ideas, a menudo en un contexto de investigación..
- * CB2: Que los estudiantes sepan aplicar los conocimientos adquiridos y su capacidad de resolución de problemas en entornos nuevos o poco conocidos dentro de contextos más amplios (o multidisciplinares) relacionados con su área de estudio..
- * CB5: Que los estudiantes posean las habilidades de aprendizaje que les permitan continuar estudiando de un modo que habrá de ser en gran medida autodirigido o autónomo..

Básica

* Se pueden consultar las competencias básicas que el estudiante tiene que haber adquirido al finalizar el máster en la siguiente dirección: http://estudis.uib.cat/es/master/comp_basiques/

Contenidos

Contenidos temáticos

Tema 1. Invariancia bajo difeomorfismos

Consideraciones sobre diversos sistemas de coordenadas. Simetrías.

Tema 2. Formulaciones alternativas de la relatividad general

Formulación Lagrangiana y Hamiltoniana. Formulación Característica.

Tema 3. Asintótica

Geometría del infinito nulo; el horizonte de eventos, energía, masa, momento lineal y angular. Detección de ondas gravitacionales en el infinito nulo.

Tema 4. Métodos espinoriales.

Tema 5. Modelos cosmológicos

Metodología docente

Actividades de trabajo presencial

Modalidad	Nombre	Tip. agr.	Descripción	Horas
Clases teóricas	Clases magistrales en el aula	Grupo grande (G)	Exposición de los temas por parte del profesorado.	18
Seminarios y talleres	Seminarios	Grupo mediano (M)	Seminario y exposición de trabajos por parte del alumnado.	2

2/4

2014-15 Año académico

Asignatura 11268 - Relatividad y Geometría

Grupo Grupo 1, 2S

Guía docente Idioma Castellano

Modalidad	Nombre	Tip. agr.	Descripción	Horas
Tutorías ECTS	Tutorías	Grupo pequeño (I	P) Tutoría o clase práctica.	5

Al inicio del semestre estará a disposición de los estudiantes el cronograma de la asignatura a través de la plataforma UIBdigital. Este cronograma incluirá al menos las fechas en las que se realizarán las pruebas de evaluación continua y las fechas de entrega de los trabajos. Asimismo, el profesor o la profesora informará a los estudiantes si el plan de trabajo de la asignatura se realizará a través del cronograma o mediante otra vía, incluida la plataforma Campus Extens.

Actividades de trabajo no presencial

Modalidad	Nombre	Descripción	Horas
Estudio y trabajo autónomo individual o en grupo	Estudio o trabajo autónomo	Estudio y realización de trabajos.	50

Riesgos específicos y medidas de protección

Las actividades de aprendizaje de esta asignatura no conllevan riesgos específicos para la seguridad y salud de los alumnos y, por tanto, no es necesario adoptar medidas de protección especiales.

Evaluación del aprendizaje del estudiante

Clases magistrales en el aula

Modalidad

Técnica Técnicas de observación (no recuperable) Descripción Exposición de los temas por parte del profesorado.

Criterios de evaluación

Porcentaje de la calificación final: 10%

Seminarios

Modalidad Seminarios y talleres

Técnica Pruebas orales (no recuperable)

Descripción Seminario y exposición de trabajos por parte del alumnado.

Criterios de evaluación

Porcentaje de la calificación final: 25%

Año académico 2014-15

Asignatura 11268 - Relatividad y Geometría

Grupo 1, 2S

Guía docente A
Idioma Castellano

Tutorías

Modalidad Tutorías ECTS

Técnica Pruebas de ejecución de tareas reales o simuladas (no recuperable)

Descripción Tutoría o clase práctica.

Criterios de evaluación

Porcentaje de la calificación final: 15%

Estudio o trabajo autónomo

Modalidad Estudio y trabajo autónomo individual o en grupo

Técnica Trabajos y proyectos **(recuperable)**Descripción Estudio y realización de trabajos.

Criterios de evaluación

Porcentaje de la calificación final: 50%

Recursos, bibliografía y documentación complementaria

Bibliografía básica

General Relativity.

Robert M Wald, University of Chicago Press, 1984. ISBN: 9780226870335, ISBN: 9780226870373.

Bibliografía complementaria

Advanced general relativity, John Stewart.Cambridge University Press 1991.ISBN:9780511608179, 9780521323192,9780521449465

The large scale structure of space-time, Stephen Hawking. Cambridge University Press 1973. ISBN:978-0521099066.

Selected articles from Living Reviews in Relativity, ISSN:1433-8351, http://relativity.livingreviews.org.